
Fault Tolerant P2P RIA Crawling

Khaled Ben Hafaiedh(B), Gregor von Bochmann, Guy-Vincent Jourdan,
and Iosif Viorel Onut

EECS, University of Ottawa, Ottawa, ON, Canada
hafaiedh.khaled@uottawa.ca, {bochmann,gvj}@eecs.uottawa.ca,

vioonut@ca.ibm.com

http://ssrg.site.uottawa.ca/

Abstract. Rich Internet Applications (RIAs) have been widely used in
the web over the last decade as they were found to be responsive and
user friendly compared to traditional web applications. Distributed RIA
crawling has been introduced with the aim of decreasing the crawling
time due to the large size of RIAs. However, the current RIA crawling
systems do not allow for tolerance to failures that occur in one of their
components. In this paper, we address the resilience problem when crawl-
ing RIAs in a distributed environment and we introduce an efficient RIA
crawling system that is fault tolerant. Our approach is to partition the
RIA model that results from the crawling over several storage devices
in a peer-to-peer (P2P) network. This makes the distributed data struc-
ture invulnerable to the single point of failure. We introduce three data
recovery mechanisms for crawling RIAs in an unreliable environment:
The Retry, the Redundancy and the Combined mechanisms. We evalu-
ate the performance of the recovery mechanisms and their impact on the
crawling performance through analytical reasoning.

Keywords: Fault tolerance · Data recovery · Rich internet applica-
tions · Web crawling · Distributed RIA crawling · P2P Networks

1 Introduction

In a traditional web application, each web page is identified by its URL. The
basic function of a crawler in traditional web applications consists of downloading
a given set of URLs, extracting all hyperlinks contained in the pages that follow
from loading these URLs, and iteratively downloading the web pages that follow
from these hyperlinks. Distributed traditional web crawling has been introduced
to reduce the crawling time by distributing the work among multiple crawlers. In
a concurrent environment, each crawler explores only a subset of the state space
by contacting one or more units that are responsible for storing the application
URLs and coordinating the exploration task among crawlers, called controllers.
In a centralized distributed system, the single controller is responsible for stor-
ing a list of the newly discovered URLs and gives the instruction of loading each
unexplored URL to an idle crawler [6]. However, this system has a single point
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 32–47, 2016.
DOI: 10.1007/978-3-319-46140-3 3



Fault Tolerant P2P RIA Crawling 33

of failure. P2P traditional crawling systems have been introduced to avoid the
single point of failure and to continue the crawling task in case of a node failure,
possibly at a reduced level, rather than failing completely. In this system, the
URLs are partitioned over several controllers in which each controller is respon-
sible for a set of URLs. Crawlers can find locally the identifiers of a database
by mapping the hash of each discovered URL information using the Distributed
Hash Table (DHT) [11], i.e. each URL is associated to a single controller in
the DHT. P2P systems [4] have been used in traditional web crawling and are
well-known for their decentralization and scalability.

As the web has evolved towards dynamic content, modern web technologies
allowed for interactive and more responsive applications, called Rich Internet
Applications (RIAs), which combine client-side scripting with new features such
as AJAX (Asynchronous JavaScript and XML) [13]. In a RIA, JavaScript func-
tions allow the client to modify the currently displayed page and to execute
JavaScript events in response to user input asynchronously, without having the
user to wait for a response from the server. A RIA model [15] is composed of
states and transitions, where states describe the distinct pages (DOM instances)
and transitions illustrate the possible ways to move from one page to another
by triggering a JavaScript event at the user interface.

The triple (SourceState, event, DestinationState) describes a transition in
a RIA model where event refers to the triggered JavaScript event, SourceState
refers to the page where the event is triggered and DestinationState refers to the
next page that follows from triggering the event. The status of a RIA transition
can take the following values: free, assigned or executed. A free transition refers
to the initial status of the transition where the destination state is not known. An
assigned transition refers to a transition that has been assigned to a crawler, and
an executed transition is a transition that has been explored, i.e. the destination
state is known. The task of crawling a RIA application consists of finding all the
RIA states, starting from the original application URL. In order to ensure that
all states have been identified, the crawler has to explore all transitions as it is
not possible to know a priori whether the execution of a transition will lead to an
already explored state or not [15]. This introduces new challenges to automate
the crawling of RIAs as they result in a large number of states derived from each
single URL. In RIA crawling, a Reset consists of returning to the original page
by loading the RIA URL, called SeedURL. Efficiency of crawling a RIA is to
find all RIA states as quickly as possible by minimizing the number of events
executed and Resets [15]. The greedy strategy has been suggested by Peng et al.
[16] for crawling RIAs due to its simplicity. The basic greedy strategy with a
single crawler consists of exploring an event from the crawler’s current state if
there is any unexplored event. Otherwise, the crawler executes an unexplored
event from another state by either performing a Reset, i.e. returning to the initial
state and retracing the steps that lead to this state [15], or by using a shortest
path algorithm [1] to find the closest state with a free event without performing
a Reset.



34 K.B. Hafaiedh et al.

A distributed decentralized scheme for crawling large-scale RIAs was recently
introduced by Ben Hafaiedh et al. [19]. It is based on the greedy strategy and
consists of partitioning the search space among several controllers over a chordal
ring [5]. In this system, RIA states are partitioned over several controllers in
which each controller is responsible for only a subset of states. Crawlers can find
locally the identifiers of a controller by searching for the controller responsible
for a given state by means of the state identifier, i.e. by mapping the hash
of each discovered state information using the Distributed Hash Table (DHT),
which allows for avoiding the single point of failure. In this system, the RIA
crawling performs as follows, as introduced in Fig. 1: The controller responsible
for storing the information about a state (Current Controller) is contacted when
a crawler reaches a new state by sending a search message, called StateInfo
message. The StateInfo message consists of the information about the newly
reached state along with all transitions on this state. Initially, the status of
each transition is free and the destination state of the transition is not known
by the controller. For each StateInfo message sent, the controller returns in
response a new event to be executed on this state by sending a message, called
ExecuteEvent message. However, if there is no event to be executed on the
current state of a visiting crawler, the controller associated with this state may
look for another state with a free event among all the states it is responsible
for. Upon sending an ExecuteEvent message, the controller updates the status
of the transition to assigned. The crawler then executes the assigned transition
and sends the result of the execution back to the visited controller by means of
an AckJob message. Upon receiving an AckJob message, the controller updates
the destination state of the transition and changes the status of the transition to
executed. The controller responsible for storing the information about the newly
reached state (Next Controller) is then contacted by the crawler.

However, this system is not fault tolerant, i.e. lost states and transitions are
not recovered when failures occur at the crawlers and controllers. In this paper,
we address the resilience problem when using the proposed P2P RIA crawling
system introduced by Ben Hafaiedh et al. [19] when controllers and crawlers are
vulnerable to node failures, and we show how to make the P2P crawling system
fault tolerant. Moreover, we introduce three recovery mechanisms for crawling
RIAs in a faulty environment: The Retry, the Redundancy and the Combined
mechanisms. Notice that the proposed RIA fault tolerance handling could be
applied to any structured overlay network. However, the network recovery may
depend on the structured overlay applied. The rest of this paper is organized as
follows: The related work is described in Sect. 2. Section 3 introduces the fault
tolerant P2P RIA crawling. Section 4 introduces the data recovery mechanisms.
Section 5 evaluates the performance of the data recovery mechanisms and their
impact on the crawling performance. A conclusion is provided in the end of the
paper with some future directions for improvements.



Fault Tolerant P2P RIA Crawling 35

Fig. 1. The P2P RIA crawling introduced by Ben Hafaiedh et al. [19] during the
exploration phase.

2 Related Work

In traditional web crawling, increasing the crawling throughput has been
achieved by using multiple crawlers in parallel and partitioning the URL space
such that each crawler is associated with a different subset of URLs. The coor-
dination may be achieved either through a central coordination process [9] that
is responsible for coordinating the crawling task, or through a structured peer-
to-peer network in order to assign different subsets of URLs to different crawlers
[11]. Various decentralized architectures using DHTs have been proposed over
different structured topologies in traditional web crawling such as Chord [5],
CAN [2], Tapestry [12] and Pastry [3], which are well known for their scalability
and low latency. However, their performance may degrade when nodes are join-
ing, leaving or failing, due to their tightly controlled topologies. This requires
some resilience mechanisms on top of each of these architectures.

In RIA crawling, a distributed centralized crawling scheme [17] with the
greedy strategy has been introduced, allowing each crawler to explore only a
subset of a RIA simultaneously. In this system, all states are maintained by
a single entity, called a controller, which is responsible for storing information
about the new discovered states including the available events on each state.
The crawler retrieves the required graph information by communicating with
the single controller, and executes a single available event from its current state



36 K.B. Hafaiedh et al.

if such an event exists, or moves to another state with some available events based
on the information available in the single database. The crawling is completed
when all transitions have been explored. Maintaining the RIA states within a
single unit in a faulty environment may be problematic since a failure occurring
within the single controller will result in the loss of the entire graph under
exploration.

A P2P RIA crawling system [18] has been proposed where crawlers share
information about the RIA crawling among other crawlers directly, without
relying on the single controller. In this system, each crawler is responsible for
exploring transitions on a subset of states from the entire RIA graph model by
associating each state to a different crawler. Crawlers are required to broadcast
every newly executed transition to all other crawlers to find the shortest path
from their current state to the next transition to be explored. Although this
approach is appealing due to its simplicity, it is not fault tolerant. Moreover, it
may introduce a high message overhead due to the sharing of transitions in case
the number of crawlers is high.

A scalable P2P crawling system [19] using Chord [5] has been recently intro-
duced to avoid the single point of failure. In this system, the P2P structure
is composed of multiple controllers which are dispersed over a P2P network as
shown in Fig. 2. In this system, each state is associated with a single controller.
Moreover, a set of crawlers is associated with each controller, where crawlers
are not part of the P2P network. Notice that both crawlers and controllers are
independent processes running on different computers.

Fig. 2. Distribution of states and crawlers among controllers: each state is associated
with one controller, and each crawler gets access to all controllers through a single
controller it is associated with.



Fault Tolerant P2P RIA Crawling 37

In this system, controllers maintain the topology of the P2P RIA crawling
system and are responsible for storing information about the RIA crawling. If
a controller fails, the connectivity of the overlay network is affected and some
controllers become unreachable from other controllers. Since a P2P network is
a continuously evolving system, it is required to continuously repair the overlay
to ensure that the P2P structure remains connected and supports efficient look-
ups. The maintenance of the P2P network consists of maintaining its topology
as controllers join and leave the network and repairing the overlay network when
failures occur among controllers independently of the RIA crawling.

There are mainly two different approaches for maintaining a structured P2P
network when failures occur: The active and the passive approaches. In the active
approach, a node may choose to detect failures only when it actually needs to con-
tact a neighbor. A node nx may perform actively the repair operation upon detect-
ing the disappearance of another node ny in the network, i.e. the node nx trying
to reach ny becomes aware that ny is not responsive. Node nx then runs a failure
recovery protocol immediately to recover from the failure of ny using ID(ny). One
drawback of the active approach is that only the routing table of some neighbor-
ing nodes are updated when a node ny fails. The passive approach solves theses
inaccuracies by running periodically a repair protocol by all nodes to maintain
their routing tables up-to-date, called the idealization protocol [8]. The idealiza-
tion protocol runs periodically by every single controller in the network where each
controller attempts to update its routing information. Liben-Nowell et al. [8] sug-
gests to use the passive approach for detecting failures to avoid the risk that all
of a node neighbors fail before it notices any of the failures. In this paper, we use
the passive approach for maintaining the structured overlay network.

The structured P2P overlay network allows for partial resilience only, i.e.
avoiding the single point of failure allows the non-faulty crawlers and controllers
to resume the crawling task in case of a node failure, after the reestablishment
of the overlay network, rather than failing completely. However, this system is
not fully resilient since lost states and transitions are not recovered after the
network recovery.

3 Fault Tolerant RIA Crawling

In the fault tolerant P2P RIA crawling system we propose, crawlers and con-
trollers must achieve two goals in parallel: Maintaining the P2P network and
performing the Fault Tolerant RIA crawling using a data recovery mechanism.

3.1 Assumptions

– The unreliable P2P network is composed of a set of controllers, and a set of
crawlers is associated with each of these controllers where both crawlers and
controllers are vulnerable to Fail-stop failures, i.e. they may fail but with-
out causing harm to the system. We also assume a perfect failure detection
and reliable message delivery which allows nodes to correctly decide whether
another node has crashed or not.



38 K.B. Hafaiedh et al.

– Crawlers can be unreliable as they are only responsible for executing an
assigned job, i.e. they do not store any relevant information about the state
of the RIA. Therefore, a failed crawler may simply disappear or leave the sys-
tem without being detected, assuming that some other non-faulty crawlers
will remain crawling the RIA. However, for the RIA crawling to progress,
there must be at least one non-faulty crawler that is able to achieve the RIA
crawling in a finite amount of time.

3.2 Protocol Description

A major problem we address in this section is to make the proposed P2P RIA
crawling system introduced by Ben Hafaiedh et al. [19] resilient to node fail-
ures, i.e. to allow the system to achieve the RIA crawling when controllers and
crawlers may fail. The fault-tolerant crawling system is required to discover all
states of a RIA despite failures, so that the entire RIA graph is explored. In the
P2P crawling system, controllers are responsible for storing part of the discov-
ered states. If a controller fails, the set of states maintained by the controller
is lost. For the P2P crawling system to be resilient, controllers are required to
apply a data recovery mechanism so that lost states and their transitions can be
eventually recovered after the reestablishment of the overlay network. For the
data recovery to be consistent, i.e. all lost states can be recovered when fail-
ures occur, each newly reached state by a crawler must be always stored by the
controller the new state is associated with before the transition leading to the
state is assumed to be executed. If a new state is not stored by the controller it
is associated with, the controller performing a data recovery will not be aware
of the state and the data recovery becomes inconsistent if the state is lost. As
a consequence, the state becomes unreachable by crawlers and the RIA graph
cannot be fully explored.

In Fig. 1, an acknowledgment for an assigned transition was sent by a crawler
informing the controller responsible for the transition about the destination state
that follows from the transition execution. However, in a faulty environment, a
crawler may fail after having sent the result of a transition execution to the pre-
vious controller and before contacting the next controller. As a consequence, the
destination state of the executed transition may never be known by the next con-
troller and data recovery of the state cannot be performed. For the P2P crawling
system to be resilient, every newly discovered state must be stored by the next con-
troller before the executed transition is acknowledged to the previous controller.
Therefore, we introduce a change to the P2P crawling described in Fig. 1 to make
it fault tolerant, as shown in Fig. 3: When the next controller responsible for a
newly reached state by a crawler is contacted, the controller stores the newly dis-
covered state and forwards the result of the transition execution, i.e. an AckJob
message, to the previous controller. As a consequence, the controller responsible
for the transition can only update the destination state of the transition after the
newly reached state is stored by the next controller. Moreover, the fault-tolerant
P2P system requires each assigned transition by a controller to be acknowledged



Fault Tolerant P2P RIA Crawling 39

Fig. 3. The fault tolerant P2P RIA crawling during the exploration phase.

before a given time-out. When the time-out expires due to a failure, the transition
is reassigned by the controller to another crawler at a later time.

4 Data Recovery Mechanisms

The data recovery mechanisms allow for either recovering lost states a failed
controller was responsible for, reassigning all transitions on the recovered states
to other crawlers and rebuilding the RIA graph model, or for making back-up
copies of the RIA information on neighboring controllers when a newly reached
state or an executed transition is known by a controller so that crawlers can
resume crawling from where a failed controller has stopped. We introduce three
data recovery mechanisms to achieve the RIA crawling task properly despite
node failures, as follows:

4.1 Retry Strategy

The Retry strategy [10] consists of replaying any erroneous task execution, hop-
ing that the same failure will not occur in subsequent retries. The Retry strategy
may be applied to the P2P RIA crawling system by re-executing all lost jobs
a failed controller was responsible for. When a controller becomes responsible
for the set of states a faulty controller was responsible for, the controller allows



40 K.B. Hafaiedh et al.

crawlers to explore all transitions from these states again. However, since all
states held by the failed controller disappear, the new controller may not have
the knowledge about the states the failed controller was responsible for and
therefore can not reassign them. To overcome this issue, each controller that
inherits responsibility from a failed controller may collect lost states from other
controllers.

The state collection operation consists of forwarding a message, called
CollectStates message, which is sent by a controller replacing a failed one. The
message is sent to all other controllers and allows them to verify if the ID of
any destination state of executed transitions they maintain belongs to the set of
states the sending controller is responsible for; such state will be appended to the
message. This can be performed by including the starting and ending keys defin-
ing the set of state IDs the sending controller is responsible for as a parameter
within the CollectStates message. A controller receiving its own CollectStates
message considers the transitions on the collected states as un-explored. A sit-
uation may arise during the state collection operation where a lost state that
follows from a transition execution is not found by other controllers. In this case,
a controller responsible for a transition leading to the lost state must have also
failed. The transition will be re-executed and the controller responsible for the
destination state of the transition will be eventually contacted by the executing
crawler and therefore becomes aware about the lost state. For the special case
where the initial state can be lost, a transition leading to the initial state may
not exists in a RIA. As a consequence, the CollectStates message may not be
able to recover the initial state. To overcome this issue, a controller that inherits
responsibility from a failed controller always assumes that the initial state is
lost and asks a visiting crawler to load the SeedURL again in order to reach the
initial state. The controller responsible for the initial state is then contacted by
the crawler and becomes aware about the initial state.

4.2 Redundancy Strategy

The Redundancy strategy is a strategy based on Redundant Storage [10] and
consists of maintaining back-up copies of the set of states that are associated with
each controller, along with the set of transitions on each of these states and their
status, on the successors of each controller. The main feature of this strategy is
that states that were associated with a failed controller and their transitions can
be recovered from neighboring controllers, which allows for reestablishing the
situation that was before the failure i.e. the new controller can start from where
the failed controller has stopped. This strategy consists of immediately propa-
gating an update from each controller to its r back-up controllers in the overlay
network when a new relevant information is received, where r is the number of
back-up controllers that are associated with each controller, i.e. a newly discov-
ered state or a newly executed transition becomes available to the controller.
When a newly reached state is stored by a controller, the controller updates its
back-up controllers with the new state before sending an acknowledgment to



Fault Tolerant P2P RIA Crawling 41

the previous controller. This ensures that every discovered state becomes avail-
able to the back-up controllers before the transition is acknowledged. Note that
the controller responsible for the new state must receive an acknowledgment of
reception from all back-up controllers before sending the acknowledgment. On
the other hand, each executed transition that becomes available to the previous
controller is also updated among back-up controllers before the result of the
transition is locally acknowledged to the previous controller.

4.3 Combined Strategy

One drawback of the Redundancy strategy is that an update is required for each
newly executed transition received by a controller. This may be problematic in
RIA crawling since controllers may become overloaded. The Combined strategy
overcomes this issue by periodically copying the executed transitions a controller
maintains so that if the controller fails, a portion of the executed transitions
remains available to the back-up controller, and the lost transitions that have not
been copied have to be re-executed again. The advantage of using the Combined
strategy is that all executed transitions maintained by a controller are copied
one time at the end of each update period rather than copying every newly
executed transition, as introduced by the Redundancy strategy. Note that the
state collection operation used by the Retry strategy is required by the Combined
strategy since not all states are recovered when a failure occurs.

5 Evaluation

We compare the efficiency of the Retry, the Redundancy and the Combined
strategies in terms of the overhead they introduce during the exploration phase as
controllers fail. We use the following notation: tt is the average time required for
executing a new transition, T is the total crawling time with normal operation,
c is the average communication delay of a direct message between two nodes,
n is the number of controllers and λf is the average failure rate of a node in
the P2P overlay network, which is of the order of 1 failure per hour per node.
Moreover, since the recovery of the overlay network is performed in parallel and
is independent of the RIA crawling, we ignore the delay introduced by running
the idealization protocol and we assume that queries are resolved with the ideal
number of messages after a short period of time after the failure of a controller.
We also assume that there are no simultaneous failures of successive controllers,
which means that only one back-up copy is maintained by each controller, i.e.
r is equal to 1. Notice that this simplified model may be extended to allow
simultaneous failures among controllers, with the condition that r back-up copies
must be maintained by each controller to allow r simultaneous correlated failures,
where r < n.

We performed a simulation study on experimental data-sets in a real exe-
cution environment, and measurements from the simulation results are used as



42 K.B. Hafaiedh et al.

parameters in the following analytical evaluation. One of the tested real large-
scale applications we consider in this study is the Bebop1 RIA. It consists of 5,082
states and 468,971 transitions with a reset cost that is equivalent to 3 transition
executions. The average communication delay c is 1 ms. For a crawling system
composed of 100 controllers and 1000 crawlers, the average transition execution
delay tt is 0.3 ms. The delay introduced by each data recovery mechanism, when
a controller fails, is described in the following.

5.1 Retry Strategy

When a controller fails, all states associated with the controller are lost and all
transitions from these states have to be re-executed. Since states are randomly
distributed among controllers, the fraction of transitions to be re-executed when
a controller fails is of the order of 1/n. Assuming that a controller fails in the
middle of the total crawling period T , the delay introduced by the failure of a
controller is equivalent to λf .T/(2.n). Additionally, the state collection operation
results in a delay of c.(n−1) units of time before the message is received back by
the neighbor responsible for the recovered states, which is very small compared
to the first delay and could be neglected. Therefore, the overhead of the Retry
strategy is equivalent to (λf .T )/(2.n).

5.2 Redundancy Strategy

In the Redundancy strategy, the update operations are performed concurrently.
When a controller fails, all states associated with the controller along with the
executed transitions on these states are recovered by the Redundancy strategy.
To do so, each result of a newly executed transition that becomes available to
a controller is updated on its successor before the transition is locally updated.
However, since the next controller responsible for sending the result of the exe-
cuted transition is not required to wait for the transition to be acknowledged
before finding a job for the visiting crawler, the delay introduced by the transi-
tion update operation is very short and therefore can be ignored.

Finally, a controller noticing a change on its list of successors due to a failed
neighbor updates its new successor with all states and transitions the controller
maintains and waits for an acknowledgment of reception from the back-up con-
troller before proceeding, resulting in one additional update operation per failure
to be performed with a delay of 2c units of time, assuming that the size of the
message is relatively small. Notice that the update operation delay increases
as the size of the data included in the message increases. The overhead of the
Redundancy strategy is given by (2.c)/(tt).

1 http://www.alari.ch/people/derino/apps/bebop/index.php/ (Local version: http://
ssrg.eecs.uottawa.ca/bebop/).

http://www.alari.ch/people/derino/apps/bebop/index.php/
http://ssrg.eecs.uottawa.ca/bebop/
http://ssrg.eecs.uottawa.ca/bebop/


Fault Tolerant P2P RIA Crawling 43

5.3 Comparison of the Retry and the Redundancy Strategies When
Controllers Are Not Overloaded

Preliminary analysis of experimental results [17] have shown that a controller
can support up to 20 crawlers before becoming a bottleneck. In this section,
we assume that each controller is associated with at most 20 crawlers so that
controllers are not overloaded.

Figure 4 compares the the overhead of the Retry and the Redundancy Strate-
gies with respect to the P2P node failure failure λf when controllers are not over-
loaded. Figure 4 shows that the Redundancy strategy significantly outperforms
the Retry strategy as the number of failures increases. However, the Redun-
dancy strategy may not remain efficient compared to the Retry strategy when
controllers are overloaded, due to the repetitive back-up update of every executed
transition required for redundancy.

Fig. 4. Comparing the overhead of the Retry and the Redundancy Strategies with
respect to the failure rate, assuming that controllers are not overloaded.

5.4 Combined Strategy

The Combined data recovery strategy consists of periodically copying the exe-
cuted transitions a controller maintains so that, if the controller fails, a portion
of the executed transitions remains available in the back-up controller, and the
number of lost transitions that have not been copied have to be re-executed
again. Let Nt be the number of executed transitions maintained by a given con-
troller per update period. The update period, i.e. the time required for executing
Nt transitions, called Tp, is given by:

Tp = Nt.tt units of time (1)

The overhead introduced for fault handling using the combined data recov-
ery strategy includes two parts: The redundancy management and the retry
processing operations. We aim to minimize the sum of the two operations which
depends on two parameters: The update period Tp and the failure rate λf .



44 K.B. Hafaiedh et al.

Fig. 5. Measurements of the processing delay p for updating the database for an
increasing number of copied transitions.

Redundancy Management Delay: We measure by simulation the processing
time required for updating the database with back-up transitions and we plot
the average delay required for processing the back-up updates with an increasing
number of transitions with a crawling system composed of 100 controllers and
1000 crawlers.

Based on the processing time measurements of Fig. 5, we obtain the linear
equation OverheadRedundancy as a function of the number of copied transitions
per update period Nt, as follows:

OverheadRedundancy = 0.0001094.Nt + 0.00030433 (2)

The curve of OverheadRedundancy corresponds to the delay required for
processing the update of backup transitions called p. The delay required for
processing one back-up copy is Tp.p/tt units of time, where p is shown in Fig. 5.
Moreover, there is an additional communication delay required for sending the
backup copy and receiving the acknowledgment back from the back-up controller
of 2.c time units. Therefore, the total delay introduced by the redundancy man-
agement operation at the end of each period, called Tbp, is given by:

Tbp =
Tp.p

tt
+ 2.c (3)

Retry Processing Delay: The Retry Processing operation consists of re-
executing, after a failure, the lost transitions that were executed after the last
redundancy update operation. Assuming that failures occur on average in the
middle of an update period, the retry processing delay is given by:

Trp =
λf .T 2

p

2
(4)



Fault Tolerant P2P RIA Crawling 45

Total Overhead Introduced by the Combined Strategy: The overhead
introduced by the Combined strategy is given by:

OverheadCombinedStrategy =
Tbp + Trp

Tp
=

λf .Tp

2
+

2.c

Tp
+

p

tt
(5)

The minimum overhead is obtained when d(Overhead)/d(Tp) = 0. We have:

Tp = 2
√

c

λf
(6)

The value of Tp with the minimum Combined strategy overhead is shown in
Fig. 6. If λf is low, Tp is high, i.e. many transitions are executed before the next
update operation, allowing for prioritizing the Retry strategy over the Redun-
dancy strategy, hoping that failures are unlikely to occur in the future. In con-
trast, if λf is high, Tp becomes low and a few transitions are executed before the
next update operation, allowing for prioritizing the Redundancy strategy over
the Retry strategy since failures are likely to occur in the future.

Fig. 6. Minimum overhead of the combined strategy.

Comparison of the Data Recovery Mechanisms: Analytical results show
a high delay related to the Retry strategy compared to the Redundancy strategy
when controllers are underloaded. Moreover, the Combined strategy outperforms
the Redundancy strategy when controllers are overloaded by periodically copy-
ing the executed transitions a controller maintains so that if the controller fails,
a portion of the executed transitions remains available in the back-up controller,
which allows for significantly reducing the number of updates performed com-
pared to the Redundancy strategy.



46 K.B. Hafaiedh et al.

6 Conclusion

We have presented a resilient P2P RIA crawling system for crawling large-scale
RIAs by partitioning the search space among several controllers that share the
information about the explored RIA, which allows for fault tolerance, when both
crawlers and controllers are vulnerable to crash failures. We defined three differ-
ent data recovery mechanisms for crawling RIAs in a faulty environment: The
Retry, the Redundancy and the Combined strategies. The Redundancy strat-
egy outperformed the Retry strategy when controllers are not overloaded since
it allows for reestablishing the situation that was before the failure, while the
Retry strategy results in a high delay due to the repetitive execution of lost tran-
sitions. However, the Combined strategy outperforms the Redundancy strategy
when controllers are overloaded by reducing the number of updates among back-
up controllers. This makes the Combined strategy the best choice for crawling
RIAs in a faulty environment when controllers are overloaded. However, there
is still some room for improvement: We plan to evaluate the impact of the data
recovery strategies on the crawling performance when controllers are overloaded
through simulation studies.

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959)

2. Ratnasamy, S., et al.: A scalable content-addressable network. In: Proceedings of
ACM SIGCOMM (2001)

3. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

4. Schollmeier, R.: A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In: Proceedings of IEEE International
Conference on Peer-to-Peer Computing, Linkping, Sweden (2001)

5. Stoica, I., et al.: Chord: a scalable peer-to-peer look-up service for internet appli-
cations. In: Proceedings of ACM SIGCOMM, San Diego, California, USA (2001)

6. Cho, J., Garcia-Molina, H.: Parallel crawlers. In: Proceedings of the 11th Interna-
tional Conference on World Wide Web, WWW, vol. 2 (2002)

7. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content addressable net-
works. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, Philadelphia, Pennsylvania, USA, pp. 94–103 (2002)

8. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing, pp. 233–242 (2002)

9. Shkapenyuk, V., Suel, T.: Design and implementation of a high performance dis-
tributed Web crawler. In: Proceedings of the 18th International Conference on
Data Engineering (2002)

10. Hwang, S., Kesselman, C.: A flexible framework for fault tolerance in the grid. J.
Grid Comput. 1, 251–272 (2003)

11. Boldi, P., et al.: UbiCrawler: a scalable fully distributed Web crawler. Softw. Pract.
Exp. 34, 711–726 (2004)



Fault Tolerant P2P RIA Crawling 47

12. Zhao, Y., et al.: Tapestry: a resilient global-scale overlay for service deployment.
In: IEEE J. Sel. Areas Commun. (2004)

13. Paulson, L.D.: Building rich web applications with Ajax. Computer 38, 14–17.
IEEE Computer Society (2005)

14. Li, X., Misra, J., Plaxton, C.G.: Concurrent maintenance of rings. In: proceedings
of the 23rd ACM Symposium on Principles of Distributed Computing, pp. 126–148
(2006)

15. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Moosavi, A., Von Bochmann, G.,
Jourdan, G.V., Onut, I.V.: Crawling rich internet applications: the state of the
art. In: Conference of the Center for Advanced Studies on Collaborative Research,
Markham, Ontario, Canada, pp. 146–160 (2012)

16. Peng, Z., et al.: Graph-based AJAX crawl: mining data from rich internet appli-
cations. In: Proceedings of the International Conference on Computer Science and
Electronic Engineering, pp. 590–594 (2012)

17. Mirtaheri, S.M., Von Bochmann, G., Jourdan, G.V., Onut, I.V.: GDist-RIA
crawler: a greedy distributed crawler for rich internet applications. In: Noubir,
G., Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8593, pp. 200–214. Springer,
Heidelberg (2014)

18. Mirtaheri, S.M., Bochmann, G.V., Jourdan, G.-V., Onut, I.V.: PDist-RIA crawler:
a peer-to-peer distributed crawler for rich internet applications. In: Benatallah, B.,
Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014, Part II.
LNCS, vol. 8787, pp. 365–380. Springer, Heidelberg (2014)

19. Ben Hafaiedh, K., Von Bochmann, G., Jourdan, G.V., Onut, I.V.: A scalable peer-
to-peer RIA crawling system with partial knowledge. In: Noubir, G., Raynal, M.
(eds.) NETYS 2014. LNCS, vol. 8593, pp. 185–199. Springer, Heidelberg (2014)


	Fault Tolerant P2P RIA Crawling
	1 Introduction
	2 Related Work
	3 Fault Tolerant RIA Crawling
	3.1 Assumptions
	3.2 Protocol Description

	4 Data Recovery Mechanisms
	4.1 Retry Strategy
	4.2 Redundancy Strategy
	4.3 Combined Strategy

	5 Evaluation
	5.1 Retry Strategy
	5.2 Redundancy Strategy
	5.3 Comparison of the Retry and the Redundancy Strategies When Controllers Are Not Overloaded
	5.4 Combined Strategy

	6 Conclusion
	References


